anulitipliation Lesson 3- Exponents \& Square Roots
-
Short way of writing \qquad 2^{5} also means $=$ \qquad
" 5 " is the exponent:

- tells us how many times we \qquad the multiplication of the base

REMEMBER:
Exponent $0=$ answer is ALWAYS \qquad
Exponent $2=$ Dequare

2

Exponent $3=$

Tricks for Word Problems:

Examples:
A) $3^{2}=$
D) $5^{3}=$
B) $6^{5}=$

E) $1^{5}=$
C) $4^{1}=$
F) $2^{0}=$

Square Root:
"Square": Using the answer of a \qquad square number, work borvords

Ex: The square of $5=5^{2}=25$ so $\sqrt{25}=5$

Symbol: \qquad

Examples:

$$
\begin{array}{cl}
\sqrt{64}=Y & \sqrt{1}=1 \\
\sqrt{16}=L & \sqrt{16 / 64}=\frac{1}{2} \\
\text { WB P } 27(2-11), \text { P } 29(17-21) &
\end{array}
$$

2. Consider the cube represented in the adjacent diagram.
a) How many cubes 1 cm per side could be placed inside this cube?

b) Find the numerical expression corresponding to the volume of this cube, then calculate this volume.
c) Use exponential notation to express this volume. \qquad

3. Write the following products using exponential notation.
a) $3 \times 3=$ \qquad 3^{2}
b) $2 \times 2 \times 2=$

c) $5 \times 5 \times 5 \times 5 \times 5=$ \qquad d) $7 \times 7 \times 7 \times 7 \times 7 \times 7=$ \qquad
4. Express the following powers as a product of factors equal to the base and then calculate the product.
a) $2^{5}=\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{32}$
b) $3^{4}=$ \qquad c) $5^{2}=$
5. Express each of the following numbers as power of 2 .
a) $8=$ \qquad b) $16=2^{4}$ \qquad c) $32=$ \qquad
d) $128=$ \qquad e) $256=$ \qquad f) $512=$ \qquad
6. Express each of the following numbers as a power of 3 .
a) $9=$ \qquad b) $81=$ \qquad c) $243=$ \qquad
7. Express each of the following numbers as a power of 10 .
a) $100=$ \qquad b) $10000=$ \qquad c) $1000000=$ \qquad
8. Write the number 64 as a power of a naturat number. Give all possible answers.
9. A number is a perfect square if it is the square of a natural number. Give the sequence of perfect squares less than or equal to 100 .
10. A number is a perfect cube if it is the cube of a natural number. Give the sequence of perfect cubes less than or equal to 1000 .
11. Evaluate the following powers.
a) $2^{4}=$ \qquad b) $3^{2}=$ \qquad c) $5^{3}=$ \qquad
d) $7^{2}=$ \qquad e) $11^{0}=$ \qquad f) $17^{1}=$ \qquad
12. Determine the value of a in each case below.
a) $a^{3} \times 5+3^{2}=49$
b) $5+3 \times 2^{a}=53$
c) $a \times 2^{3}+5^{2}=65$ \qquad d) $3^{2}+2 \times a^{2}=107$
e) $5 \times a^{2}-3 \times 2=39$
f) $\left(3+a^{2}\right) \times 5=95$
g) $20-2 \times 3^{a}=2$
h) $3+2 \times a^{5}=5$
\qquad
\qquad
\qquad
\qquad
\qquad

AsT]VITY 3 Land to fence

Mr . Black wants to put up a fence around his square property. The area of his property is $36 \mathrm{~m}^{2}$.
a) What measure would enable us to determine the perimeter of the property?
\qquad
b) If the fence costs $\$ 15$ per metre, what will be the total cost to completely fence in Mr. Black's property?

SQUARE ROOT

The square root of a natural number a is the unique number b, such that b squared is equal to a. The square root of a is denoted: \sqrt{a}
Ex. : $\sqrt{25}=5$ since $5^{2}=25$
$\sqrt{8} \notin \mathbb{N}$
18. Determine the value of the following square roots.
a) $\sqrt{49}=$ \qquad b) $\sqrt{81}=$ \qquad c) $\sqrt{0}=$ \qquad
d) $\sqrt{1}=$ \qquad e) $\sqrt{100}=$ \qquad f) $\sqrt{225}=$ \qquad
19. Determine the value of the natural number a in each of the following cases.
a) $a^{2}=4$ \qquad b) $a^{2}=16$
c) $\sqrt{10000}=a$
d) $a=\sqrt{400}$
e) $a^{2}=0$
f) $a^{2}=144$
\qquad
20. a) Determine the value of each expression below.

1. $(\sqrt{9})^{2}$ \qquad 2. $(\sqrt{25})^{2}$ \qquad 3. $(\sqrt{100})^{2}$
\qquad
b) What is the value of $(\sqrt{a})^{2}$? \qquad
2. a) Calculate
3. $\sqrt{16}+\sqrt{9}=$ \qquad 2. $\sqrt{16+9}=$
\qquad
b) Fill in the blank with the appropriate symbol $=$ or $\neq . \sqrt{a}+\sqrt{b} \ldots \sqrt{a+b}$
c) Calculate
4. $\sqrt{16} \times \sqrt{9}=$ \qquad 2. $\sqrt{16 \times 9}=$
\qquad
d) Fill in the blank with the appropriate symbol, $=\mathrm{ou} \neq \sqrt{a} \times \sqrt{b} \ldots \sqrt{a \times b}$?
e) Calculate $\sqrt{5^{2}}$
f) If a is a natural number, is it true that $\sqrt{a^{2}}=a$? \qquad
